Step 3 Pre-process

1) Filter out unwanted cells (optional)

for this dataset, we don’t need to filter out unwanted cells

2) Remove unwanted genes (optional)

for this dataset, we don’t need to filter out unwanted genes

3) Normalization

data Normalization for both ADT (CLR) and RNA (log)

4) Indentify HVGs for RNA data

Call seurat function to identify highly variable genes (HVG) for RNA data

5) Data scaling

Scale data for both ADT and RNA

Step 4 Linear dimension reduction (PCA)

directly call Seurat function for linear dimension reduction (PCA)

Step 5 Determine number of PCs

call Seurat function JackStraw to determine number of PCs

Step 6 Distance calculation and joint distance calculation

calculate cell-cell distances for RNA, ADT and joint. alpha was set to 0.5 as initial, number of PC was set to 20 by default.

Step 7 Non-linear dimension reduction (UMAP and t-SNE)

run UMAP as Non-linear dimension reduction for RNA, ADT and joint analysis.

ROGUE score + ADT score

R session info

## R version 3.6.3 (2020-02-29)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: macOS Mojave 10.14.6
## 
## Matrix products: default
## BLAS:   /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib
## 
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] forcats_0.5.0     stringr_1.4.0     dplyr_1.0.2       purrr_0.3.4      
##  [5] readr_1.4.0       tidyr_1.1.2       tibble_3.0.4      ggplot2_3.3.2    
##  [9] tidyverse_1.3.0   cowplot_1.1.0     Seurat_3.9.9.9002 LinQView_0.99.0  
## 
## loaded via a namespace (and not attached):
##   [1] Rtsne_0.15            colorspace_1.4-1      deldir_0.1-29        
##   [4] ellipsis_0.3.1        ggridges_0.5.2        fs_1.5.0             
##   [7] rstudioapi_0.12       spatstat.data_1.4-3   farver_2.0.3         
##  [10] leiden_0.3.3          listenv_0.8.0         ggrepel_0.8.2        
##  [13] fansi_0.4.1           lubridate_1.7.9       RSpectra_0.16-0      
##  [16] xml2_1.3.2            codetools_0.2-16      splines_3.6.3        
##  [19] knitr_1.30            polyclip_1.10-0       jsonlite_1.7.1       
##  [22] umap_0.2.6.0          broom_0.7.2           ica_1.0-2            
##  [25] cluster_2.1.0         dbplyr_1.4.4          png_0.1-7            
##  [28] uwot_0.1.8            shiny_1.5.0           sctransform_0.3.1    
##  [31] compiler_3.6.3        httr_1.4.2            backports_1.2.0      
##  [34] assertthat_0.2.1      Matrix_1.2-18         fastmap_1.0.1        
##  [37] lazyeval_0.2.2        limma_3.42.2          cli_2.1.0            
##  [40] later_1.1.0.1         formatR_1.7           htmltools_0.5.0      
##  [43] tools_3.6.3           rsvd_1.0.3            igraph_1.2.6         
##  [46] gtable_0.3.0          glue_1.4.2            RANN_2.6.1           
##  [49] reshape2_1.4.4        Rcpp_1.0.5            spatstat_1.64-1      
##  [52] cellranger_1.1.0      vctrs_0.3.4           nlme_3.1-150         
##  [55] lmtest_0.9-38         xfun_0.18             globals_0.13.1       
##  [58] rvest_0.3.6           mime_0.9              miniUI_0.1.1.1       
##  [61] lifecycle_0.2.0       irlba_2.3.3           goftest_1.2-2        
##  [64] future_1.19.1         MASS_7.3-53           zoo_1.8-8            
##  [67] scales_1.1.1          hms_0.5.3             promises_1.1.1       
##  [70] spatstat.utils_1.17-0 parallel_3.6.3        RColorBrewer_1.1-2   
##  [73] yaml_2.2.1            reticulate_1.18       pbapply_1.4-3        
##  [76] gridExtra_2.3         rpart_4.1-15          stringi_1.5.3        
##  [79] ROGUE_1.0             rlang_0.4.8           pkgconfig_2.0.3      
##  [82] matrixStats_0.57.0    evaluate_0.14         lattice_0.20-41      
##  [85] ROCR_1.0-11           tensor_1.5            labeling_0.4.2       
##  [88] patchwork_1.0.1       htmlwidgets_1.5.2     tidyselect_1.1.0     
##  [91] RcppAnnoy_0.0.16      plyr_1.8.6            magrittr_1.5         
##  [94] R6_2.5.0              generics_0.1.0        DBI_1.1.0            
##  [97] withr_2.3.0           haven_2.3.1           pillar_1.4.6         
## [100] mgcv_1.8-33           fitdistrplus_1.1-1    prettydoc_0.4.0      
## [103] survival_3.2-7        abind_1.4-5           future.apply_1.6.0   
## [106] modelr_0.1.8          crayon_1.3.4          KernSmooth_2.23-17   
## [109] plotly_4.9.2.1        rmarkdown_2.5         readxl_1.3.1         
## [112] grid_3.6.3            data.table_1.13.2     blob_1.2.1           
## [115] reprex_0.3.0          digest_0.6.27         xtable_1.8-4         
## [118] httpuv_1.5.4          openssl_1.4.3         munsell_0.5.0        
## [121] viridisLite_0.3.0     askpass_1.1